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The second edition of D’Arcy Thompson’s On Growth and Form was written
only shortly before the advent of computers made it possible to develop
more sophisticated mathematical models of processes of growth,
morphogenesis and pattern formation in nature. It also predates the
blossoming of several branches of science with the conceptual tools to
investigate complex phenomena such as self-organization, nonlinear
dynamics and chaos, fractal geometry and self-organization. As a result,
Thompson’s aspirations sometimes fall short of his means - and
occasionally he sets out on the wrong path. This image essay explores some
of the instances in which Thompson surpassed his limitations, or
alternatively was constrained by them. In either circumstance, it illustrates
how his themes remain areas of significant scientific activity today.

Animal markings: spots and stripes

While it is often rightly said that D’Arcy Thompson would have benefitted from a
computer, many of the lacunae, abandoned and half-hearted explanations in On
Growth and Form (OGF) stem from a lack of conceptual rather than
computational tools. That is true in the case of one the most fertile theories of
pattern formation, formulated ten years after the revised edition of the book was
published in 1942. The markings on the skins of animals - the spots of the
leopard and stripes of the zebra - were almost literally an afterthought for
Thompson, who admitted after a thousand pages that “pattern has been wellnigh
left out of the account, although it is part of the same story” [1090; hereafter,
italicized page numbers refer to OGF 2nd edition [1]]. Thompson goes on simply
to enumerate the various characteristic ways in which a zebra’s stripes adapt to
the body shape - the chevrons at the juncture of foreleg and torso, the ‘gridiron’
of the rump (Figure 1). No real explanation for these markings is even attempted.



Figure 1 Zebra patterns from OGF [1092].

In essence they were accounted for, however, in 1952 in a paper by Alan Turing
titled “The chemical basis of morphogenesis” [2]. Turing devised his theory
primarily to account for the asymmetric division of a spherically symmetric
embryo into regions with different developmental trajectories as the body plan
emerges. This is an example of the phenomenon that physicists recognize as
spontaneous symmetry-breaking: the reduction in symmetry that commonly
accompanies the appearance of complex form. Turing postulated (bio)chemical
agents called morphogens that diffuse through the embryo and condition cells to
form different tissues. It later became clear that diffusing morphogens with
particular chemical characteristics - specifically, ones that are autocatalytic,
speeding up their own rate of formation in a feedback process - can in some
circumstances create regions of distinct chemical composition in an abiotic
chemical system. This combination of diffusion, which tends to equalize
differences of composition, and autocatalytic reaction, which tends to exacerbate
them, is the distinguishing feature of what is now known as a reaction-diffusion
system.

Turing showed, in effect, that a particular subset of reaction-diffusion equations
can generate a fixed, non-uniform spatial pattern from an initially uniform
mixture of morphogens. He realised the possible relevance for animal markings
but, lacking a computer (his ideas were of course central to the development of
these machines in the 1950s), he could only sketch out a rough indication of the
patchiness of his system from calculations performed by hand. Later
computational studies showed that these so-called Turing patterns have the
characteristic forms of spots and stripes (Figure 2), being quasi-ordered in the
sense of having a more or less uniform size and spacing but lacking perfect
periodicity. The application of these ideas to animal markings was pioneered in
the 1970s and 1980s by mathematical biologists James Murray [3] and Hans
Meinhardt [4], who showed that Turing’s mechanism, enacted with morphogens
that control pigmentation, can produce patterns ranging from zebra stripes and
leopard spots to markings on mollusc shells [5] (Figure 3).
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Figure 2 The generic patterns of Alan Turing’s activator-inhibitor scheme: spots and
stripes. Images: Jacques Boissonade and Patrick De Kepper, University of Bordeaux.

Figure 3 Markings on zebras (a) and leopards (b) seem likely to be variants of Alan
Turing’s chemical patterning mechanism. Images: a, Martin Pettitt; b, Andy Rogers.

Turing’s mechanism is a very general one, requiring only dispersal and feedback
(positive and negative, or ‘activating’ and ‘inhibitory’) of the interacting
constituents within a particular range of parameters. It has been proposed as an
explanation for the patchiness of some ecosystems, the spatial regularities of
animal habitats, and even the formation of ripples in windblown sand (Figure 4)

[5].

Figure 4 Ripplesin windblown sand can be considered the product of an activator-
inhibitor process like that postulated by Turing. Image: .EVO.



Convecting fluids

The spontaneous creation of two-dimensional hexagonal patterns is so common
in nature that it seemed natural to Thompson to consider such structures in a
unified way - from bubbles and honeycombs to the biomineral mesh of diatom
exoskeletons (Figure 5) and the Giant’s Causeway (see below). Mechanics and
simple geometry will suffice, he suggested, to produce such an arrangement in
most if not all cases. Consider, for example, a layer of growing spherical or
circular cells of uniform size. The most efficient packing is hexagonal, and the
internal pressure will push the boundaries into hexagons as they come into
contact. Surface tension will perform that task for soap bubbles; and as for the
honeycomb, Thompson points out how Erasmus Bartholin in the seventeenth
century proposed that “the hexagonal cell was no more than the necessary result
of equal pressures, each bee striving to make its own little circle as large as
possible.” [527] The fact that the hexagonal array minimizes surface area, and
thus economizes on wax, then becomes incidental.

Figure 5 Some of the hexagonal and polygonal patterns considered by D’Arcy
Thompson: honeycombs (a) [527], diatom exoskeletons (b) [511], and coral (c) [513].

But Thompson was wrong about bees, which cannot rely on self-organizing
physics but must build their hexagonal cells by exquisite measurement of angles
and wall thickness - and after all seemingly mindful of the economics. Some of
Thompson’s other examples turn out to be a little more subtle too. He was struck
by the polygonal, pseudo-hexagonal arrays formed by processes of diffusion, as
investigated by the French biologist Stéphane Leduc - the “artificial cellular
tissues” made by coloured drops of sodium chloride in salt solution or by
potassium ferrocyanide in gelatine (Figure 6). He paid particular attention,



however, to the “tourbillons cellulaires” studied in 1900 by the French physician
Henri Bénard (Figure 7), which appear in a thin liquid layer heated from below
so that it undergoes convective flow [6]. Thompson points out that the German
Heinrich Quincke had reported the same patterns 30 years earlier. Convection
currents are produced as the lower liquid becomes warmer and less dense, and
begins to rise by buoyancy:
The liquid is under peculiar conditions of instability, for the least fortuitous
excess of heat here or there would suffice to start a current, and we should
expect the system to be highly unstable and unsymmetrical... [but] whether
we start with a liquid in motion or at rest, symmetry and uniformity are
ultimately attained. The cells draw towards uniformity, but four, five or
seven-sided cells are still to be found among the prevailing hexagons... In
the final stage the cells are hexagonal prisms of definite dimensions, which
depend on temperature and on the nature and thickness of the liquid layer;
molecular forces have not only given us a definite cellular pattern, but also
a “fixed cell-size”... When bright glittering particles are used for the
suspension (such as graphite or butterfly scales) beautiful optical effects
are obtained, deep shadows marking the outlines and the centres of the
cells [503].

Figure 6 An ‘artificial cellular tissue’ formed from potassium ferrocyanide diffusing in
gelatine [501].

Figure 7 Bénard’s convection patterns or tourbillons cellulaires in smoke [504].



This technique of using ‘tracer’ particles to map out fluid flow, first mentioned by
Leonardo da Vinci, has produced some very beautiful images of hexagonal
convection cells in modern experiments (Figure 8). Thompson perceptively
points out that where we might expect turbulent chaos, we get geometric order,
and moreover that there is a selection process that determines the size of the
pattern features.

Figure 8 A hexagonal convection pattern rendered visible by suspended metal flakes.
Image: Manuel Velarde, Universidad Complutense, Madrid.

He explains that this phenomenon was studied theoretically by Lord Rayleigh in
1916, who showed that patterned convection only appears above a particular
threshold in temperature gradient [7]. They represent another case of
symmetry-breaking: the fluid is initially uniform in the plane of the surface, but
breaks up into regions of ascending or descending flow. Rayleigh found that
initially convection creates not hexagons but parallel ‘roll cells’, looking from
above like stripes. How this pattern evolves as the heating rate increases is a
very subtle matter: the mathematical analysis of the stability of different cell
shapes is complicated, and was performed only in the 1960s and 1970s by
Friedrich Busse and his coworkers. Convection can produce patterns not only in
liquids but in, for example, ‘frost-heaving’ of stones during freeze-thaw cycles of
frozen ground (Figure 9a) and the regular patterning of clouds in the
atmosphere (Figure 9b) - both also structures noted by Thompson.




Figure 9 Convection is believed to create stone polygons in the soils of northern tundra
(a) and the regular striations of cloud streets (b). Images: a, Agriculture and Agri-Food
Canada; b, NOAA, Boulder, Colorado.

Phyllotaxis

The spiral ordering of some plant structures, such as the florets of a sunflower or
cauliflower head (Figure 10), could hardly escape the attention of any natural
philosopher, and has long been remarked on: as Thompson pointed out, the
Royal Society’s botanist and cataloguer Nehemiah Grew claimed in his seminal
Anatomy of Plants (1683) that “from the contemplation of Plants, men might first
be invited to Mathematical Enquirys” [912]. The history of this topic, called
phyllotaxis, is long, and includes such figures as Leonardo da Vinci, the Swiss
botanist Charles Bonnet, the French mathematicians Louis and Auguste Bravais,
and Charles Darwin.

Figure 10 Phyllotaxis in the sunflower and cauliflower [913, 914].

The most celebrated property of phyllotactic patterns is the numerical
relationships of the spirals. There is a set that rotates clockwise and another
rotating counterclockwise, and invariably - on the pine cone, the sunflower, the
monkey-puzzle tree and elsewhere - the numbers of spirals in the two sets are
successive members of the Fibonacci series. Attributed to the thirteenth-century
[talian mathematician Leonardo of Pisa (‘Fibonacci’), this is a sequence in which
each member is the sum of the previous two, beginning with 0 and 1: 0,1, 1, 2, 3,
5,8, 13, 21, 34... The ratio of successive terms approaches a constant the further
one progresses along the series: an irrational number known as the Golden
Section and equal to 2/(V5-1) = 1.618034 to the first six decimal places.

Why should phyllotaxis show this apparent numerology? Thompson argued that
the spirals per se are an entirely predictable consequence of orderly packing of
elements accompanied by growth in one direction: “When the bricklayer builds a
factory chimney, he lays his bricks in a certain steady, orderly way, with no
thought of the spiral patterns to which this orderly sequence inevitably leads”
[921]. He argues on geometric grounds that, given this spiral form, the Fibonacci
relationships are simply those that ensure “no leaf should be superimposed
above another” [933]. He has no time for quasi-mystical suggestions that the
plant is “aiming” to position its leaves or florets at some “ideal angle.”



Maybe so; but there does seem to be a possible optimization process at play here.
The German botanist Wilhelm Hofmeister proposed in 1868 that each new leaf
bud (primordium) appears periodically on the boundary of a growing stem apex
in a position corresponding to the largest gap left by the preceding primordia [8].
In other words, the primordia are simply trying to pack efficiently, just like
atoms in a crystal. In 1904 Arthur Church, an English botanist, took this idea
further in a book called On the Relation of Phyllotaxis to Mechanical Laws,
drawing on rather vague comparisons with spiralling vortices in fluid flow and
magnetism and proposing that the “energies of life” resemble electrical energy
[9]. D’Arcy Thompson dismissed such ideas: “[Church’s] physical analogies are
remote, and the deductions [ am not able to follow.” [920]

Nonetheless, Hofmeister and Church did help to establish the idea that
phyllotaxis is related to the question of how new leaves can be packed on the
stem apex. This notion has defined most modern thinking on the matter. The
thesis was supported by computer calculations showing that if successive
spiralling primordia diverge at the “Golden Angle” of 137.5°, they are optimally
packed [10].

But packing alone will not suffice, for even small errors (inevitable in a biological
growth process) will disrupt it. There seems in fact to be a genuine repulsion
between primordia. This was implied by experiments in which repelling droplets
of a magnetic fluid added successively to a disk and travelling towards the outer
edge adopt a phyllotactic arrangement [11]. Meanwhile, studies in the 1930s
showed that a plant stem’s apex actively inhibits primordium formation within a
certain distance. This inhibition can be attributed to diffusion of the hormone
auxin through the outer ‘skin’ of the stem, which may engage in the activation
and inhibition of proteins involved in primordium development [12]. If this
process of chemical inhibition recalls Turing’s activator-inhibitor scheme, that is
appropriate. It seems possible that the patterning process in plants is indeed
formally akin to those in animal markings [13] - just, in fact, as Alan Turing
suspected. [14]

The Giant's Causeway

The quasi-geometric columns that may be formed in volcanic basalt have long
been regarded with wonder. When the botanist Joseph Banks visited Fingal’s
Cave on the island of Staffa, off Scotland’s west coast, in 1772, he was amazed by
the geometric facility of nature (Figure 11). “Compared to this”, he said,
what are the cathedrals or palaces built by men! Mere models or
playthings, as diminutive as his works will always be when compared with
those of nature. What now is the boast of the architect! Regularity, the only
part in which he fancied himself to exceed his mistress, Nature, is here
found in her possession, and here it has been for ages undescribed [15].



Figure 11 The entrance to Fingal’s Cave, Staffa, Scotland. Image: Stephen Morris,
University of Toronto.

Thompson shows the same geological pattern at the Giant’s Causeway in County
Antrim, on the coast of Northern Ireland (Figure 12). He explained that these
rock formations appear in basaltic lava as it cools, contracts and cracks:
“rupture... shatters the whole mass into prismatic fragments”, he wrote.
“However quickly and explosively the cracks succeed one another, each relieves
an existing tension, and the next crack will give relief in a different direction to
the first.” [521] This is all very fine, but Thompson does not really account for
why the cracks create such a remarkable pattern: a series of vertical columns,
each with a polygonal cross-section that seems most often to be hexagonal.

Figure 12 The Giant’s Causeway, Country Antrim [520].

The cracking of the Giant’s Causeway began at the top - where the heat of the
molten basaltic outflow escaped and the lava was therefore coolest - and
advanced downwards into the solidifying rock bed. This occurred in a succession
of layers, each freezing and cracking before the next, which has left horizontal
striations in the surfaces of the basalt pillars.

In 1983 the Irish physicists Denis Weaire and Conor O’Carroll suggested that
irregular cracking of the uppermost layers would become marshalled into a
stable polygonal network as the cracks descend, because, for a fixed total length



of cracks, a polygonal, roughly hexagonal network is more effective than a
random reticulation at releasing stress in the contracting layer. That suggestion
has been supported by computer simulations [16], in which, once a roughly
‘optimal’ polygonal network is attained, it remains fixed from one layer to the
next, creating vertical-sided columns.

An analogous geometry appears in other processes of contraction and cracking.
In 1922 a British optical engineer named J. W. French observed a kind of mini-
Giant’s Causeway, on a scale of centimetres, in a dried starch slurry. Stephen
Morris and Lucas Goehring have more recently reported the same result (Figure
13), and have verified that an initially rather disordered network of cracks does
indeed find approximate geometric order as it descends [17].

Figure 13 Pseudo-hexagonal columns formed by drying and cracking in a slurry of
starch. Image: Stephen Morris, University of Toronto.

Splashes

The second edition of On Growth and Form opens with the iconic photograph of a
splash formed in milk by a falling droplet (Figure 14), taken by the American
electrical engineer Harold Edgerton of the Massachusetts Institute of
Technology. In the 1920s Edgerton used the newly invented stroboscope to
‘freeze’ rapid, repetitive motions when the flash rate of the lamp was
synchronized with the cycling rate of the movement. He developed a
stroboscopic photographic system that could take 3000 frames per second. The
forms and patterns revealed this way in jets of water are captured “live”, as it
were, in Danish-Icelandic artist Olafur Eliasson’s light installation Model for a
Timeless Garden (2011). These delicate fringed, domed and undulating shapes
will be instantly recognized by viewers familiar with On Growth and Form [394-
396].



Figure 14 A splash of milk captured by the high-speed photography of Harold Edgerton,
forming the opening plate of OGF.

Figure 15 Model for a Timeless Garden (Olafur Eliasson, 2011).

Edgerton’s studies were derived from the high-speed photography of British
physicist Arthur Worthington, who also captured the hidden beauty of splashes
in the 1870s. Worthington discovered that a splash erupts into a corona that
breaks up into evenly spaced jets around its rim, each of them releasing micro-
droplets of their own (Figure 16). There is, he said, something seemingly
“orderly and inevitable” in these forms, although he admitted that “it taxes the
highest mathematical powers” to describe and explain them [18]. Thompson
compared Worthington’s fluted cup with its “scolloped” and “sinuous” edges to
the forms a potter makes at a more leisurely pace from wet clay. He considered
this patterning to be analogous to that which created the shapes of soft-tissued
living organisms, such as hydroids (marine animals related to jellyfish and sea



anemones). Here the form is persistent - yet “there is nothing”, Thompson said,
“to prevent a slow and lasting manifestation, in a viscous medium such as a
protoplasmic organism, of phenomena which appear and disappear with
evanescent rapidity in a more mobile liquid” [391-2]. It was, on this occasion,
rather too fanciful a speculation.

Figure 16 The breakup of a splash, photographed by Arthur Worthington [389].

Advances in experimental techniques, coupled to the relevance to practical
questions ranging from air-sea gas exchange to the design of inkjet printing, have
sustained the formation and breakup of droplets as a topic of contemporary
interest in fluid mechanics. Research by Sigurdur Thoroddsen and colleagues, for
example, has revealed the extraordinary complexity that can develop in this
process [19]. Several hierarchical patterning processes can be involved - for
example, the mixing of fluids in the drop and the pool can generate ordered
vortices at the interface (Figure 17) [20]. There is, in other words, still unguessed
complexity being discovered in the fall of a raindrop.

Figure 17 A series of vortices formed at the interface between a droplet and the pool
into which it falls, as seen in computer simulations of the process [19]. Image: Sigurdur
Thoroddsen and Marie-Jean Thoraval, King Abdullah University of Science and
Technology, Saudi Arabia.

Liesegang rings and banded minerals



The sketchiness of some of D’Arcy Thompson'’s explanations sometimes results
not so much from a lack of tools to attack the problem as from an under-
estimation of the challenge it presents. Such is the case for his discussion of the
phenomenon known as Liesegang’s rings.

In 1896 the German chemist Raphael Eduard Liesegang discovered that a drop of
silver nitrate solution placed on a thin layer of gelatine perfused with potassium
bichromate will diffuse through the gel to precipitate a series of concentric rings
of reddish brown silver dichromate (Figure 18a). The resemblance to the banded
structure of agate and onyx was widely noted. Thompson seems rather to wave
the mystery away, saying “For a discussion of the raison d’étre of this
phenomenon, the student will consult the textbooks of... chemistry” [660]. He is
under the impression that the effect has already been explained by Michael
Faraday in terms of “the influence on crystallization of the presence of foreign
bodies or ‘impurities’” [661] - in this case, the gelatine itself. Quite how such
impurities, presumably randomly distributed, give rise to a periodic banding is
not specified.

Thompson goes on to point out that, if Liesegang’s reaction is conducted notin a
thin film but in a vertical tube of the salt-infused gelatine, with the silver nitrate
diffusing from the top later, the result is a series of regular bands (Figure 18b).
He remarks with a hint of skepticism that some investigators “have been inclined
to carry the same chemico-physical phenomenon a very long way” [663-4],
attributing to some similar effect “the striped leaves of many plants (such as
Eulalia japonica), the striped or clouded colouring of many feathers or of a cat’s
skin [and] the patterns of many fishes” [664].

15

B R

§
==
Al
=T
e
==
=
_—
——
e
R
—
R
—
—-
—

§ (10N




c

Figure 18 Liesegang rings and bands, as shown in OGF (a: [660]; b, [661]) and in a
modern experiment (c) [20]. Image c: Rabih Sultan, American University of Beirut,
Lebanon.

Unlikely as it might seem, such speculations turn out to carry some force.
Liesegang’s rings and bands are now known to be an example of a reaction-
diffusion chemical process, akin to that postulated by Alan Turing to explain
animal markings (see above). They are, however, of a somewhat different
variety, for the patterns are here not stationary, constantly maintained dynamic
structures in space but are frozen signatures of a pulsed reaction that is periodic
in time. They are examples of chemical travelling waves.

These waves may appear in a reaction-diffusion system under slightly different
circumstances from those considered by Turing, but with the same basic
ingredients: chemical reactions involving autocatalytic feedback that generates
runaway acceleration of the rate at which the products are formed. The waves
arise because of a balance between autocatalysis, leading eventually to
exhaustion of the reaction, and diffusion, which replenishes the reagents. This
balance gives rise to wavefronts that spread like ripples, at which products are
formed, followed by a zone of depletion in their wake. The resulting patterns are
expanding concentric and spiral structures (Figure 19). Oscillatory reactions
were first identified in the 1950s by Boris Belousov in the Soviet Union, and
were firmly established, in the face of much disbelief, by his compatriot Anatoly
Zhabotinsky during the following decade. The detailed chemical processes were
elucidated over the next two decades [21].



Figure 19 Chemical waves in the Belousov-Zhabotinsky reaction. Image: Stephen
Morris, University of Toronto.

Liesegang’s patterns are a variation of this phenomenon in which chemical
reaction of the reagents precipitates an insoluble material. Much of the
underlying chemistry was, however, already understood by the end of the
nineteenth century, thanks in large part to the physical chemist Wilhelm
Ostwald, an expert on crystal precipitation and growth. He explained that small
crystal ‘seeds’ cannot grow into a genuine precipitate of silver chromate particles
until they surpass a certain critical size. This growth is slowed by the gel, which
lowers the rate at which the ions diffuse towards a ‘seed’. So the gel gets over-
concentrated (supersaturated) in silver chromate, until finally a threshold is
crossed and the concentration is high enough to trigger crystal formation
(nucleation) everywhere. Then almost all the silver chromate is flushed out in a
pulse, producing a band of precipitate, and the concentration remaining in
solution falls below the threshold. It takes some time for this concentration to
build up again, by which time the diffusion front has moved on. So there is a cycle
of supersaturation, nucleation, precipitation and depletion that depoits a train of
bands in the wake of the advancing front. This picture captures the essence of
the phenomenon, but some of the details - such as the reason for the gradually
widening gap between bands - are still being debated [22].

Snowflakes

It is not hard to imagine that Thompson must have been immensely dissatisfied
to have been forced to treat in so perfunctory a manner one of the most striking
and beautiful manifestations of complex form in nature: the snowflake (Figure
20) [23]. “Crystals lie outside the province of this book”, he admitted, “yet snow-
crystals, and all the rest besides, have much to teach us about the variety, the
beauty and the very nature of form” [696]. He was forced again to fall back on
sheer description. At first allying snowflakes with all other crystals in displaying
geometric symmetry (here hexagonality), Thompson then alludes to what makes
these pointed, branches and tenuous flakes so different to the compact, blocky



facets of most crystals: “Ringing her changes on this fundamental form, Nature
superadds to the primary hexagon endless combinations of similar plates or
prisms, all with identical angles but varying lengths of side” [696]. Thompson
rightly intimated that the hexagonality is the result of the symmetry of the
underlying crystal lattice of ice, in which water molecules are arranged in
hexagonal rings: “These snow-crystals seem... to give visible proof of the space-
lattice on which their structure is formed” [696]. Butitis in this ‘superaddition’
that the puzzle lies - why all this seemingly frivolous decoration? Thompson
gives no clue.

Figure 20 Snowflakes in OGF: as sketched by Dominic Cassini in the seventeenth
century (a) and as depicted in drawings based on the microphotographs of Bentley and
Humphreys [23] (b) [696].

The truth is that the snowflake combines a representation of the underlying
equilibrium geometry of its fabric - the atomic-scale structure of ice — with that
of the dynamic process of its growth. The branches result from feedback as the
ice crystal grows in moist air. Tiny bumps and irregularities on the ice surface
become amplified because they more effectively radiate the latent heat released
when water vapour freezes to ice, making them increasingly pronounced [24].
These growth instabilities are random, but they have hexagonality imposed on
them from the underlying lattice [25]. The result can be quasi-regular, with
branches bearing only an approximate relationship to one another (Figure 21a),
or it can be highly symmetrical, each branched arm mirroring all the others with
astonishing fidelity (Figure 21b). Such equivalence of snowflake arms was noted
by Thompson, but quite how one arm knows what the others are doing remains
amystery [26] - yet another question of growth and form awaiting an answer.



a

Figure 21 Some snowflakes have arms that are only qualitatively similar (a), while for
others every arm is identical to the others (b). Images: Kenneth Libbrecht, California
Institute of Technology, Pasadena.
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