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  Abstract
  One of the core assumptions in the study of complex systems is that there 
exist ‘universal’ features analogous to those that characterize the notion of 
universality in statistical physics. That is to say, sometimes the details do not 
matter: certain aspects of complex behaviour transcend the particularities of 
a given system, and are to be anticipated in any system of a multitude of 
simultaneously interacting components. There can be no tougher test of this idea 
than that posed by the nature of human social systems. Can there really be any 
similarities between, say, a collection of inanimate particles in a fl uid interacting 
via simple, mathematically defi ned forces of attraction and repulsion, and 
communities of people each of whom is governed by an unfathomable wealth 
of psychological complexity? The traditional approach to the social sciences has 
tended to view these psychological factors as irreducible components of human 
social interactions. But attempts to model society using the methods and tools 
of statistical physics have now provided ample reason to suppose that, in many 
situations, the behaviour of large groups of people can be understood on the 
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basis of very simple interaction rules, 
so that individuals act essentially as 
automata responding to a few key 
stimuli in their environment. This is 
clearly a challenging, perhaps even 
disturbing, idea. I will review some 
of the evidence in its favour. I will 
show, with examples ranging from 
pedestrian dynamics to social choice 
theory, economics, demography, 
and the formation of businesses 
and alliances, that modelling the 
behaviour of individuals and social 
and political institutions according 
to the viewpoint of statistical physics 
does seem capable of capturing some 
of the important features of social 
systems. These models reveal many of 
the characteristic elements displayed 
by other complex systems: collective 
dynamics that changes via abrupt 
shifts (phase transitions), metastability, 
critical phenomena and scale-free 
statistical variations. I will discuss what 
this implies for the notions of human 
free will and determinism. 

 Copyright © 2003 S. Karger AG, Basel 

 Introduction 
 There is nothing new in the idea that hu-

man society can be analyzed using the 
tools and methods of physics. This belief, 
however alarming it might seem to some 
contemporary social scientists (and oth-
ers), lies at the core of most liberal political 
theories for the past four centuries. The re-
markable thing about the plethora of sci-
entifi c publications today that seek to un-
derstand social phenomena using mathe-
matical models of interacting ‘particles’ is 
not the boldness of this vision but the fact 
that its connection to the past has been 
largely forgotten. In the 17th century, the 
theological basis for systems of governance 
and social order was undermined by the 
emergence (one might say re-emergence; 
it was not unfamiliar in ancient Greece) of 
the concept of ‘natural law’, which held that 
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human society could be understood and 
directed according to reason and logic. ‘Ev-
erywhere’, says historian George Sabine, 
‘the system of natural law was believed to 
offer the valid scientifi c line of approach to 
social disciplines and the scientifi c guide 
to social practice’  [1] . 

 But was ‘natural law’ really related to 
physics, or was it just a belief that God had 
made the universe an orderly place? The 
English philosopher Thomas Hobbes, in 
his treatise  De Cive  (1642), expressed no 
doubt that the workings of society were ev-
ery bit as mechanical as the workings of 
clockwork: 

   ‘For as in a watch, or some such engine, 
the matter, fi gure, and motion of the wheels 
cannot be well known, except it be taken in 
sunder, and viewed in parts; so as to make 
a more curious search into the rights of 
states, and duties of subjects, it is neces-
sary… they be so considered, as if they 
were dissolved, that is, that we rightly un-
derstand what the quality of human nature 
is, in what matter it is, in what not, fi t to 
make up a civil government’  [2] . 

   In other words, to understand society 
you need to break it down into its compo-
nent parts, understand their individual 
function, and then see how they interact 
with one another to generate the whole. 
This was the procedure recommended to 
natural philosophers by René Descartes in 
his  Discourse on Method  as a means of 
studying nature. Both Hobbes and Des-
cartes were inspired by Galileo. Hobbes, 
who visited the famous Italian scientist in 
Florence in 1636, was convinced that Gali-
lean physics established the fundamental 
rules governing the behaviour of the ‘par-
ticles’ of society: human beings. 

 Hobbes’s analytic approach to political 
science was supplemented by the insis-
tence of his friend and protégé William 
Petty, a founding member of the Royal So-
ciety, that social systems be studied empir-
ically by quantifying social numbers, such 
as populations, budgets, trade fi gures and 
so forth  [3] . Petty’s approach evolved into 

the discipline of social statistics, from 
which much of the modern understanding 
of statistics as a branch of mathematics 
emerged. Scientists such as Laplace, Pois-
son, Maxwell and Boltzmann, as well as 
moral philosophers like Immanuel Kant, 
Auguste Comte, John Stuart Mill and Karl 
Marx, were infl uenced by the enthusiasm 
for a statistical perspective on social sci-
ence  [4] . In the light of all this, it is perhaps 
remarkable that it took modern statistical 
physics so long to begin fi nding applica-
tions in social science. 

 There are many possible reasons for 
that delay. One is perhaps that recent social 
science has tended to adopt a psychologi-
cal approach to understanding human be-
haviour, focusing on the ways in which in-
dividuals understand and respond to their 
social environment. Another is no doubt 
the perception that social science is a ‘soft’ 
science, and therefore unsuited to (and 
maybe undeserving of) the rigour of the 
methods common to a ‘hard’ science like 
physics. Today, physicists are coming to ac-
knowledge the truth of Herbert Simon’s 
claim that the social and economic scienc-
es are in fact the hardest sciences, in the 
sense of being the most diffi cult and com-
plex, with rules that can change over time, 
often in an adaptive manner. 

 The current interest, from within the 
physical sciences, in so-called complex 
systems has also both engendered some 
confi dence in extending their techniques 
to social systems and stimulated an appre-
ciation that these systems provide a rich 
playground of phenomena and data within 
which complexity science can explore its 
capabilities. That is to say, social sciences 
are a great place to look for problems in 
complexity. There is also surely a profound 
motivation for these studies from the fact 
that computational methods are now able 
routinely to simulate systems with very 
many interacting components. It is possi-
ble to overstate that case, however; some of 
the earliest attempts to model traffi c fl ow 
using physics-based models date back to 

the 1950s  [5] , and in his groundbreaking 
book  Micromotives and Macrobehavior  
(1978), US economist Thomas Schelling 
 [6]  investigated the dynamics of simple 
lattice models of social behaviour by 
hand. 

 If the case is going to be made that 
physics can contribute to an understand-
ing of the social sciences, that is not going 
to be done by any crucial experiment or 
theory. Rather, the argument will have to 
be cumulative, arising on a case-by-case 
basis. I shall look in the concluding section 
at the question of whether one can con-
sider this argument already to be compel-
ling. First, I shall ask what we should be 
looking for in seeking a physics of society. 
What are the characteristic phenomena of 
statistical physics that might be identifi ed 
in social systems? I shall follow this with a 
description of some of the specifi c in-
stances in which ideas from physics have 
been used both to model and to interpret 
social phenomena. Such examples are now 
rather impressive in their breadth and 
scope  [7] . Before concluding, I will exam-
ine the question of what a physics of soci-
ety might mean, and has seemed to mean 
in the past, for questions of free will and 
determinism. 

   The Signatures of Statistical 
Physics 
 Abrupt changes in the states of matter 

have been evident ever since humankind 
boiled their cooking pots dry or witnessed 
the spring thaw. The fi rst manifestation of 
statistical physics – that is, the kinetic the-
ory of gases, due largely to Clausius, Max-
well and Boltzmann – contained no pre-
scription for these phase transitions. By 
modifying the theory to include intermo-
lecular forces, however, van der Waals  [8] 
 was able to account both for the transition 
between a liquid and a gas and the exis-
tence of a critical point (in the phase space 
of temperature, pressure and density) at 
which this transition disappears. The for-
mer phenomenon is a fi rst-order transi-
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tion, which, loosely speaking, means that it 
involves an abrupt jump in a thermody-
namic variable (here density). (More pre-
cisely, a fi rst-order transition exhibits 
a discontinuity in the fi rst derivative of the 
system’s free energy as a function of some 
thermodynamic variable.) The liquid-gas 
critical point, in contrast, is a second-order 
phase transition (it involves a discontinu-
ity in the second derivative of the free en-
ergy). Cooling a supercritical fl uid through 
its critical point induces a separation into 
two distinct phases, liquid and gas. There 
is no jump, but rather a discontinuity in the 
slope of the density of the system. The 
transition involves a bifurcation, whereby 
a state that was initially homogeneous sep-
arates into two distinct phases ( fi g. 1 ). 

 Phase transitions are collective phe-
nomena. This is not just to say that the very 
notion of a liquid or gas phase has no 
meaning for an individual molecule; rath-
er, it implies that all the molecules in the 
system change their dynamical behaviour 
at once. At thermodynamic equilibrium, a 
liquid is liquid-like everywhere. Even at 
just a fraction of a degree above its melting 
point, a substance does not contain resid-
ual pockets of solid. A phase transition is 
an all-or-nothing affair. 

 The way in which these transitions hap-
pen differs if they are fi rst-order or second-
order (or more generally for the latter, ‘crit-
ical’, meaning that the discontinuity is in 

the second or higher derivative of the free 
energy). A fi rst-order transition proceeds 
via nucleation and growth of the new 
phase. Precisely at the transition point – 
say, the melting temperature of a solid – 
the free energies of the two phases, liquid 
and solid, are equal. Slightly below the 
melting point, the solid has the lower free 
energy. But because there is an energetic 
cost to forming a solid-liquid interface, a 
very small crystal can be formed only at a 
cost in free energy: the free-energy benefi t 
of solidifying a small volume of liquid is 
outweighed by the cost of the interface that 
must be formed. Because the former is pro-
portional to the cube of the crystal size, 
whereas the latter scales as the square of 
the size, the favourable free energy on 
freezing comes to dominate over the sur-
face terms as the crystal seed grows. But 
growth of this seed must fi rst overcome an 
energy barrier due to the surface free en-
ergy. So there is a nucleation barrier to the 
transition, and as a result, the liquid can be 
supercooled into a metastable state if the 
nucleation rate is suppressed – for exam-
ple, by removing specks of dust or surface 
irregularities that lower the nucleation 
barrier. Because, likewise, a solid can be su-
perheated, the phase transition can show 
hysteresis: melting and freezing can hap-
pen at slightly different temperatures. This 
is a kinetic phenomenon (governed by the 
rate of nucleation), and so it can depend on 

the path along which the change happens 
(for example, the rate of heating or cool-
ing). The limit of stability of a metastable 
state – for example, the lowest possible 
density of a supercooled liquid – is called 
a spinodal. Beyond the spinodal point, the 
system is no longer metastable but will de-
compose spontaneously into its more sta-
ble state. 

 In contrast, a critical transition cannot 
show hysteresis. As a supercritical fl uid is 
cooled towards its critical temperature, the 
density fl uctuations in the fl uid become 
more pronounced: some regions look liq-
uid-like, and some look gas-like, and both 
the size and the amplitude of these fl uc-
tuations increase. More specifi cally, the 
size distribution of the fl uctuations ap-
proaches a power-law statistical distribu-
tion, which it attains at the critical point 
( fi g. 2 ). Moreover, the correlations between 
the motions of the particles in the fl uid be-
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Fig. 1. First-order ( a ) and critical ( b ) phase transitions.

Fig. 2. Fluctuations at the critical point. In 
this simulation, black and white regions de-
note the two distinct subcritical states – for 
example, liquid and gas in a fl uid. Patches of 
either phase appear on all size scales acces-
sible to the system, and they are constantly 
changing in time.



193Complexus 2003;1:190–206 Ball 

come increasingly long-ranged as the crit-
ical point is approached, and exactly at the 
critical point the correlation length diverg-
es to infi nity: the fl uid becomes infi nitely 
‘responsive’ to perturbations, because ev-
ery particle is in some sense ‘in touch with’ 
every other. This is not, of course, a refl ec-
tion of any change in the range of the inter-
particle forces; rather, it arises because the 
particles become able to pass an infl uence 
from one to another across the whole range 
of the system (rather than that infl uence 
being eventually overwhelmed by random 
noise, as it is away from the critical point). 
If, however, the supercritical state is 
quenched rapidly below its critical tem-
perature, separation into the two stable 
phases takes place via a process called spi-
nodal decomposition (that is, decomposi-
tion inside the spinodal region of the phase 
diagram). This involves spontaneous 
growth of regions of the two phases 
throughout the system, contrasting with 
the nucleation and growth that occurs in a 
fi rst-order transition. 

 Critical points are thus characterized by 
power-law fl uctuations. In contrast to ran-
dom, Gaussian fl uctuations, power-law 

fl uctuations have no characteristic size 
scale: they are scale-free. This means that, 
while the probability of a fl uctuation of a 
certain size declines in both cases as this 
size increases, the decline is much slower 
for power-law statistics than for Gaussian 
statistics. To put it another way, large fl uc-
tuations are much more likely in power-
law systems ( fi g. 3 ). 

 These, then, are some of the key motifs 
that could signify the operation of ‘statisti-
cal physical’ phenomena in a complex sys-
tem of many interacting agents: abrupt 
phase transitions, metastability and hys-
teresis, collective behaviour, critical points, 
and power-law fl uctuations or statistical 
behaviour. Where do we fi nd them in 
society? 

   Crowd Behaviour 
 Collective motion is widespread in the 

animal world, and often shows some re-
markable manifestations. The fl ocking be-
haviour of birds was once considered so 
puzzling that researchers were driven even 
to the extreme of postulating a kind of te-
lepathy in order to explain how it is possi-
ble  [9] . Computer simulations, however, 

have now shown that organisms that show 
this kind of swarming behaviour – not just 
birds, but also fi sh and bacteria – do not 
need to communicate globally in order to 
coordinate their actions. It is enough that 
they be able to respond only to the move-
ments of their near neighbours  [10–12] . A 
typical set of local rules that generates 
swarming might be as follows  [10] : 

 Each particle responds to the movements 
of others within just a certain radius. 

 Each particle matches its speed to the av-
erage speed of others within that radius. 

 Each particle moves towards the centre 
of mass of this local group. 

 Each particle aims to avoid collisions 
with others. 

 Vicsek et al.  [13]  have shown that, in two 
dimensions, the effect of noise on swarm-
ing behaviour of ‘self-propelled particles’ is 
analogous to the effect of temperature on 
the spins of a magnetic material. In fact, 
this system is technically equivalent to a 
Heisenberg magnet, in which the spins can 
point in any direction in the xy plane  [13, 
14] . That is to say, just as heating the mag-
net brings about a critical phase transition 
from a magnetically ordered to a magneti-
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  Fig. 3.  Schematic of the difference between 
Gaussian and power-law probability distribu-
tions. Here the vertical axis shows the fre-
quency with which some parameter has a 
certain size  x , as a function of  x . Note the 
logarithmic axes. 

Fig. 4. A phase transition from a disordered ( a ) to an ordered ( b ) state – from random to 
coherent motion – takes place in a system of self-propelled particles as the amount of noise 
in the system decreases [from  13] .
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cally disordered state, so increasing noise 
in the system of particles (which hinders 
their ability to synchronize their motions) 
creates an abrupt transition from a swarm 
state, in which the particles move collec-
tively, to a random state in which there is 
no coordination of the motion ( fi g. 4 ). 

 This suggests that there is indeed a kind 
of physics in animal motions. But humans 
are rarely in a situation where they attempt 
to coordinate their movements into fl ock-
ing patterns. More typically, they form 
crowds that either have a common destina-
tion (in which case the collectivity is trivi-
ally prescribed by the boundary condi-
tions of the system) or that lack any com-
mon purpose. In the latter case, is the result 
inevitably just chaos and confusion? 

 In 1971, Henderson  [15]  showed that 
the movements of people in crowds seem 
to obey the Maxwell-Boltzmann statistics 
of the kinetic theory of gases. Perhaps this 
is not so surprising; after all, these statis-
tics are the result of so many independent, 
randomly moving particles. It is by no 
means obvious that a crowd of ‘self-pro-
pelled’ people should show the same distri-

bution as a system of thermally excited 
particles, but neither was it clear that Hen-
derson’s statistics were really good enough 
to provide a stringent test of the match 
with the Maxwell-Boltzmann distribution. 
Making the connection to the kinetic the-
ory did, however, prompt Henderson to 
propose that perhaps in situations that en-
hanced the crowd density, they might show 
a phase transition to a liquid-like state. I 
shall return to this possibility in the next 
section. 

 Helbing and Molnar  [16]  have modelled 
the movements of pedestrians more sys-
tematically using a particle-based model 
that enacts local rules, somewhat along the 
lines of the models of fl ocking behaviour. 
The model generally assumes that the 
walkers each have a particular destination 
and a particular preferred walking speed. 
They will maintain both their direction and 
their speed unless forced to slow down or 
deviate to avoid collision. This simple pre-
scription is notable for its minimal as-
sumptions about the psychology of the 
walkers, and yet it yields group behaviour 
that looks remarkably life-like. For exam-

ple, walkers traversing a corridor in oppo-
site directions will tend to form into streams 
 [17] . There is no explicit prescription in the 
model for these collective modes of move-
ment; they are an emergent property. Inter-
estingly, they can also be considered an in-
telligent response to the situation, since 
streams help to reduce the chances of col-
lision. This can be seen as an example of the 
‘wisdom of crowds’ – the familiar notion 
that a group can arrive at a good solution to 
a problem even without any conscious 
pooling of their actions  [18] . 

 Helbing et al.  [19]  have seen abrupt 
switches in the collective motions of walk-
ers, which have strong similarities to phase 
transitions. For example, when a crowd of 
walkers (with frictional properties when 
they come into contact) attempts to exit 
from a room through a single doorway, the 
rate of exit decreases rapidly above a cer-
tain threshold of the average speed with 
which the walkers try to move. In this ‘pan-
ic’ state, the walkers jam up against one an-
other at the doorway, so that it is very hard 
for anyone to get out. This kind of behav-
iour seems to be apparent in experimental 
studies on mice attempting to exit from a 
fl ooded chamber  [20] . Two groups of walk-
ers passing in opposite directions down a 
corridor can likewise become ‘jammed’ if 
there is too much randomness in their mo-
tions – too much noise in the system. This 

Fig. 5. The evolution of human trail systems across open spaces ( a ) can be simulated by 
models of pedestrian dynamics ( b ) [from  22] 
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looks rather like a freezing transition – 
albeit one that is induced in a counter-
intuitive way by raising the ‘temperature’ 
(noise) in the system  [21] . 

 The ‘collective’ features of pedestrian 
motion can result in the spontaneous for-
mation of characteristic trail patterns 
across empty spaces such as parks  [22]  
( fi g. 5 ). By developing a better understand-
ing of these apparently ‘natural’ modes of 
human group movement, it should become 
possible to formulate better designs for 
civic and urban spaces  [23]  and to make 
more accurate predictions of the safety 
measures needed in buildings. 

   Traffi c Flow 
 The movement of traffi c is a problem of 

‘purposeful’ granular fl ow very much akin 
to the motions of pedestrians, and it has 
been studied and simulated using similar 
particle-based models. In these, the vehi-
cles typically aim to achieve a preferred 
speed and to avoid collisions. The system 
is rather more constrained, however, by the 
essentially one-dimensional nature of the 
motion. Both simple models  [24, 25]  and 
observations  [26]  suggest that there exists 
a threshold traffi c density, above which 
congestion sets in rather abruptly. Thus, 
below the threshold the traffi c moves free-
ly – the vehicles are more or less indepen-
dent of one another – and the throughput 
of traffi c increases in proportion to the 
traffi c density. But above the threshold, the 
density rises sharply and the throughput 
falls to close to zero, in a traffi c jam ( fi g. 6 ). 
This looks rather like a kind of freezing 
transition. The free-fl ow state may persist 
metastably above the threshold density, 
however, until a random perturbation nu-
cleates a jam. In both theories and observa-
tion, these jams typically propagate up-
stream, against the direction of traffi c fl ow 
( fi g. 7 ). A jam can sometimes increase in 
complexity over time, for example bifur-
cating into two or more distinct jams that 
create ‘stop-and-go’ waves of traffi c. 

 Kerner and Rehborn  [27]  have pro-
posed that, in addition to the free-fl ow and 
jam states of traffi c, there is a third phase 
which they call synchronized fl ow. Here the 
traffi c is dense but nevertheless continues 
to fl ow relatively smoothly because all the 
vehicles have synchronized their speeds 
and lane-changing is rare. Synchronized 
fl ow can be considered analogous to the 
liquid state, which intervenes between the 
gas-like free fl ow and the solid-like jams. It 
remains a matter of debate, however, 
whether synchronized fl ow is a fundamen-
tal traffi c state or whether it is triggered 
only by ‘inhomogeneities’ such as bottle-

necks and junctions  [25] . Schreckenberg  
and colleagues  [28]  have argued that syn-
chronized fl ow may be stabilized by a fac-
tor not taken into account in simple granu-
lar models: the drivers’ desire for a smooth 
journey, which makes them try to avoid re-
peated and extreme braking and accelera-
tion. Apart from anything else, this result 
supplies a reminder that simplicity is not 
always a virtue and that increasing the lev-
el of psychological complexity in a model 
can alter the global behaviour in signifi -
cant ways. 

 The congested traffi c states in these 
models are not always manifested in a 
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single, simple jam. Helbing et al.  [29]  have 
found that a perturbation such as a junc-
tion can trigger a wide range of different 
states, depending on the traffi c density on 
the main highway and on the entry lane: 
for example, oscillatory congestion, sta-
tionary and moving jams and so forth. 
These changes in the nature of the fl ow ap-
pear quite abruptly, like phase transitions, 
as the fl ow parameters are changed, and 
they can be represented on a ‘phase dia-
gram’ of traffi c states ( fi g. 8 ). 

 The intersections and traffi c lights of 
urban road networks introduce a whole 
new level of complexity that is, at present, 
far less well explored. Biham et al.  [30]  have 
found that there is an abrupt transition 
from free fl ow to total ‘gridlock’ on a square 
grid of city streets in which the fl ow at 
crossing points is governed by traffi c sig-
nals. And Toledo et al.  [31]  fi nd that even 
a single car can display chaotic dynamics 
when travelling through a linear set of pe-
riodically switched traffi c lights with the 
option of speeding up to beat the lights or 
slowing down to anticipate them . 

 Quite aside from simply predicting 
modes of traffi c fl ow – and particle-based 
simulations are already used in Germany 
and the USA for real-time simulation of 
fl ow on highways, pinned to data from a few 
automated monitoring points  [32]  – these 
studies could help to improve road design 
and safety measures. As vehicle technology 
becomes more sophisticated, for example 
with the addition of automated, radar-
based driver-assistance systems that elim-
inate the problems of delay and overreac-
tion in human responses, these models 
might even be coupled to control systems 
in individual vehicles so as to smooth out 
the congestion and jams that would inevi-
tably result with imperfect human drivers 
at the wheel. Traffi c simulations by Treiber 
and Helbing  [33]  and Davis  [34]  have 
shown that some jams in heavy traffi c can 
be smoothed away completely if just 20% 
of the cars are equipped with automated 
systems that enable them to respond opti-
mally to changes in traffi c fl ow. 

   The Dynamics of Voting 
 Daily life presents us with endless choic-

es. Indeed, many of the customs and rules 
of our societies have evolved largely to 
lighten the load of this decision making: 
the establishment of norms enables us to 
make some ‘choices’ without even having 
to think about them. Epstein has shown 
that a simple model of consensus-seeking 
agents faced with a binary choice rapidly 
evolves towards states in which the agents 
form normative clusters that require the 
smallest amount of opinion sampling pos-
sible: the agents fi nd states in which most 
of them do not really have to ‘think’ about 
how to act  [35] . 

 But there is no escaping some choices. 
The classic example is the election, in 
which we are asked to place a vote for one 
candidate among several. This can be seen 
as an analogue of a wide range of social 
phenomena in which the challenge is to se-
lect one option from many. The diffi culties 
presented by voting schemes were appreci-
ated by Aristotle, who saw that a society 
divided into two political factions of com-
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parable size was inherently unstable. Con-
dorcet  [36]  pointed out in the 18th century 
that majority rule is not always the best 
voting procedure, and he and others pro-
posed various voting systems that aimed 
to avoid some of its shortcomings  [37] . But 
these efforts are all undermined by Arrow’s 
‘impossibility theorem’  [38] , which dem-
onstrates that there is no democratic vot-
ing procedure that is able to meet all of the 
logical criteria we might demand of a ‘fair’ 
system. 

 Physics-based studies of voting and de-
cision making have, however, tended to 
neglect such diffi culties, looking instead 
simply at the way in which interactions af-
fect the distribution of voting orientations 
in a social system. ‘Orientation’, a meta-
phor in social terms, is translated into a 
physical reality in these models by basing 
them on models of magnetism. Each voter 
can be represented as a magnetic atom 
whose spin can point in as many discrete 
directions as there are choices. In the sim-
plest case of a binary decision, this can be 

mapped onto the two-dimensional Ising 
model  [39–41] . 

 Just as in the magnetic case, the orienta-
tion of one agent infl uences that of its 
neighbours: the models assume that there 
is a kind of social force, akin to magnetism, 
that encourages the ‘spins’ to become 
aligned. In other words, each agent tries to 
persuade its neighbours to adopt the same 
opinion. A simple mapping of the voting 
problem onto the Ising model would clear-
ly have the rather trivial result of producing 
a global consensus, provided that there is 
not too much ‘noise’ in the system to allow 
the mutual interactions to be felt – that is, 
provided the system is below the critical 
temperature at which a switch to a ran-
domized state takes place. This clearly does 
not look much like reality, in which societ-
ies tend to support a range of different 
opinions. But one of the key considerations 
is the structure of the social network 
through which each agent propagates its 
infl uence. Wu and Huberman  [42]  have 
shown that a voting model in which the 
agents act over a social network with a 

power-law distribution of links – the scale-
free statistical form of some real social net-
works  [43, 44]  – evolves so that several 
groups with different opinions coexist per-
sistently in the society. In other words, the 
society can sustain localized islands of 
opinion that do not expand to ‘infect’ it all. 

 Bernardes et al.  [45]  have shown that a 
similar model of ‘magnetic’ electoral vot-
ing on a scale-free network, in which the 
votes are to be distributed among a large 
number of candidates rather than just two, 
produces a power-law distribution of votes 
– which is precisely what has been ob-
served for the 1998 Brazilian elections, in 
which over 100 million people voted for 
over 10,000 minor governmental offi cials 
 [46] . The key consideration here is that 
these power-law statistics are  not  what 
would be expected if each voter were mak-
ing his or her decision independently; in 
that case, the distribution of votes among 
candidates should be Gaussian. The cru-
cial message, then, is that democratic elec-
tions do not appear to be determined by 
independent decisions throughout the 

  Fig. 9.  In a lattice model of demographics, agents of two colours will move to a free lattice site (shown in white) if the 
proportion of neighbours of a different colour exceeds a certain threshold. A well-mixed initial population ( a ) evolves 
rapidly into one that is strongly colour-segregated ( b )  [simulations by Paul Ormerod].



198 Complexus 2003;1:190–206  The Physical Modelling of Human Social Systems  

electorate: there are strong collective ef-
fects, due to the mutual interactions that 
sway the opinions of voters, which skew the 
results away from Gaussian. 

   Cultural Segregation in 
Human Populations 
 This infl uence of interactions between 

agents is arguably the key factor that is ex-
plored in physics-based models of social 
behaviour. Social scientists have of course 
always recognized that individuals re-
spond to (and infl uence) what others do, 
but they have not generally acknowledged 
that these collective effects can dominate 
the resulting social behaviour in a way that 
does not depend on the fi ne details of indi-
vidual psychology. An analogy in statistical 
physics might be the way in which the 
gross behaviour of a many-particle system 
– the nature of its phase transitions, and in 
particular the scaling behaviour of proper-
ties at critical points, which defi ne the ‘uni-
versality class’ of the system – may not de-
pend at all on the detailed mathematical 
form assumed for the intermolecular forc-
es. All that matters for the broad-brush col-
lective behaviour are factors such as 
whether the forces are long- or short-
ranged, and what the dimensionality of the 
system is  [47] . 

 One corollary is that individual behav-
iour might not be a good guide to the be-
haviour of a group – or conversely, the way 
a group acts might tell us rather little about 
how an individual thinks. One of the classic 
– and potentially controversial – demon-
strations of this was provided by Schelling 
 [6] , who used a lattice model to simulate 
the emergence of segregation in a society. 

 The development of ethnic neighbour-
hoods in large cities is a very familiar phe-
nomenon, and can be seen as a natural 
consequence of the human tendency to 
mix with others of the same culture, race, 
class or opinions. In some cases the out-
come seems benign – the Chinatowns, Ital-
ian and Jewish quarters in some Western 
cities may become colourful tourist attrac-

tions. Elsewhere this segregation can be-
come problematic, for example in the ten-
sions that have smouldered between Asian 
and white districts in Northern British cit-
ies or in the ghettoization of black neigh-
bourhoods following ‘white fl ight’ from US 
city centres. 

 A phenomenon like white fl ight could 
easily be read as an expression of substan-
tial racial prejudice and intolerance. But 
Schelling  [6]  showed that a lattice model 
containing two types (‘colours’) of agent, in 
which each will move to an empty site if 
more than a third of its neighbours are of 
a different ‘colour’, will quickly evolve from 
an initially well-mixed population to one 
that is highly segregated  ( fi g. 9 ). The seg-
regation is motivated by a preference to be 
among one’s ‘own type’, but the degree of 
intolerance in these agents is not especial-
ly high – they are happy to accept up to one 
third of their neighbours being a different 
‘colour’. (Indeed, segregation can develop 

if the threshold is even higher.) To look at 
it another way, one would be wrong to infer 
from the highly segregated society that is 
produced that the agents in that society 
must be extremely prejudiced. 

 This kind of ‘demixing’ is precisely what 
is seen in some two-component physical 
systems – for example, in polymer mix-
tures. The model also shows some phe-
nomena that are readily accounted for in 
physical terms, such as the migration of 
empty spaces to the interfaces between 
neighbourhoods of different ‘colour’, like 
gas bubbles accumulating at interfaces to 
minimize the interfacial free energy.  

   The Spread of Crime 
 The spread of modes of behaviour, fash-

ions and opinions has been perceptively 
discussed by Gladwell  [48] , who notes that 
it typically tends to become abrupt once it 
encompasses a certain fraction of a popu-
lation. Gladwell calls these thresholds ‘tip-
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ping points’, and he compares them to the 
onset of an epidemic in the spread of dis-
ease. An alternative interpretation, howev-
er, can be made in terms of fi rst-order 
phase transitions, in which the phase 
change engulfs a system once there is a 
critical nucleus that exceeds the nucleation 
threshold. 

 This link to phase transitions is explicit 
in models of the spread of social norms of 
crime and marriage devised by Campbell 
and Ormerod  [49] . They make the basic as-
sumption that crime breeds more crime – 
which, in an agent-based model, corre-
sponds to the notion that individuals who 
are surrounded by criminals are more like-
ly to turn to crime themselves. By the same 
token, individuals whose neighbours are 
law-abiding are more inclined to act that 
way too, whether out of peer pressure or 
because they conclude that they do not 
need to take the risk of committing a crime, 
with its attendant threat of punishment. 
Campbell and Ormerod do not simply di-
vide the population into criminals and 
non-criminals, however. They assume that 
there are three groups: agents who are not 
susceptible to crime under any circum-
stances (most women and pensioners 
might fall into this group), active crimi-
nals, and agents who are susceptible to be-
coming criminals. This susceptibility is 
infl uenced by the size of the other two 
groups. 

 One of the major questions for crimi-
nologists is whether levels of crime are in-
fl uenced by the severity of the penal re-
gime. There is no consensus here; some 
argue for being ‘tough on crime’, while oth-
ers say that crime is largely the result of 
social deprivation and that harsher sen-
tences for criminals would have little effect. 
Campbell and Ormerod looked at how, in 
their model, changing the severity of pun-
ishment and the level of social deprivation 
(both of which were assumed to be linked 
in a straightforward way to the probability 
of an individual becoming a criminal) af-

fected the level of criminality in the popu-
lation. 

 They found that changing one of these 
factors while keeping the other constant 
resulted, in both cases, in large regimes of 
parameter space where two distinct states 
were possible: a high-crime and a low-
crime society ( fi g. 10 a). They assumed that 
one state would switch to another at the 
end of each branch. Thus, changing the so-
cial conditions could induce an abrupt im-
provement in or worsening of crime levels 
at the transition points; but elsewhere, 
such changes made very little difference to 
the state of the system. Under different cir-
cumstances, therefore, one might observe 
changes that either supported or denied 
the effi cacy of being tough on crime. 

 These results look exactly like the phase 
transition between the liquid and gas states 

in van der Waals’ model ( fi g. 10 b). One 
might anticipate that the model could show 
a kind of ‘equilibrium’ transition between 
the two crime states somewhere around 
the middle of the overlap between branch-
es, and that beyond this point the respec-
tive states become ‘metastable’ – and sus-
ceptible to switching if a suffi ciently large 
region can be nucleated – until the meta-
stability disappears at the spinodal point. 

 Of course, this is a very crude model. 
But the point is not that it is supposed to 
provide an accurate prediction of what 
might happen in a real society. Rather, it 
illustrates a mechanism by which collec-
tive effects convert a gradual change in ‘so-
cial forces’ into an abrupt switch in social 
behaviour. Gladwell  [48]  points to the 
‘clean-up’ of New York City in the 1990s, 
ostensibly the result of the mayor’s ‘zero-
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tolerance’ policy on crime, as an example. 
Moreover, it warns us to be wary of dog-
matic assertions from politicians that a 
particular remedy for a social ill is always 
the right one, regardless of the particular 
social circumstances at the time. 

 Ormerod and Campbell  [50]  have de-
veloped a similar ‘social pressure’ model to 
explore the demographics of marriage, 
and in particular the way in which the pro-
portion of married people depends on 
both the strength of social attitudes 
(whether marriage is ‘unfashionable’, or 
conversely whether unmarried cohabita-
tion is condemned) and the economic in-
centives (such as tax advantages). They 
fi nd similar two-state behaviour, this time 
displaying both fi rst-order switches and a 
critical point – which map directly onto the 
 P ,  V ,  T  landscape of the liquid-gas transi-
tion in van der Waals’ theory ( fi g. 11 ).  

   The Growth of Business Firm 
and Collectives 
 People like to form groups. They give us 

companionship, power in numbers, and a 
sense of identity and belonging. In the 
business world, a collective is often more 
effective than an individual, since, as Adam 
Smith  [51]  pointed out, the division of la-
bour creates greater effi ciencies, and many 

individuals can afford labour-saving ma-
chinery that lone workers could not. The 
seemingly inexorable need for companies 
to grow in order to stay competitive is be-
lieved to be driven by the concomitant in-
creasing returns of scale, as well as by the 
advantages of greater market share and 
visibility – the ‘rich-get-richer’ effect. 

 Nonetheless, most companies go out of 
business. Of the 5,000 largest US fi rms op-
erating in 1982, only 1,750 or so still ex-
isted in 1996. No one really knows why 
fi rms fail, although there is no lack of theo-
ries. This is not surprising, since no one re-
ally knows how fi rms grow either. The fi rst 
attempt to formulate a theory of fi rm 
growth, by Gibrat  [52]  in 1931, still pro-
vides a kind of benchmark for theories to-
day, but it does not seem to supply an ac-
curate explanation of the observed data on 
fi rm growth and size  [53] . What we  do  
know is that there are many more small 
fi rms than large ones, and that their distri-
bution seems to follow a power law  [54]  
( fi g. 12 a). So, in fact, do the rates of fi rm 
growth – both positive and negative  [55]  
( fi g. 12 b). These power laws suggest that, 
as we might expect, the growth of fi rms is 
a highly correlated phenomenon: the fate 
of any one fi rm depends strongly on what 
happens to the others. 

 Axtell  [56]  has devised an agent-based 
model of fi rm growth that, unlike most 
economic models, does not specify an in-
creasing return of scale at the outset. The 
model allows   for such a thing to evolve, but 
does not prescribe it. Firms arise from the 
cooperation of agents who seek to opti-
mize their ‘utility’, expressed as a compro-
mise between the amount of work they do 
(which generates money) and the amount 
of leisure time they retain. In balancing 
these two things, each agent has different 
preferences: the population is heteroge-
neous. Axtell fi nds that the model never 
settles into an equilibrium state – which is 
to say, it has no Nash equilibrium (a state 
in which no agent can improve its lot by 
changing its position). There is a constant 
turnover of fi rms of all sizes ( fi g. 13 a). The 
model generates power laws both for fi rm 
sizes and fi rm growth rates ( fi g. 13 b, c), as 
observed in reality. And it gives some in-
sight into what makes a fi rm successful, 
suggesting that far more important than 
the ability to maximize profi t or overall 
utility is the ability to acquire and retain 
productive workers. Firms fail when they 
become dominated by ‘slackers’ that do lit-
tle work but seek to benefi t from the efforts 
of their colleagues. 

   The Formation and Stability 
of International Alliances 
 The business market is commonly 

modelled as a competitive, Darwinian 
world. But sometimes even the largest 
fi rms are forced to forgo competition for 
collaboration. For example, all businesses 
suffer if a new technology lacks a technical 
standard – if personal computers all used 
different sizes of compact disks, for in-
stance. The need for standardization has 
become very clear with the growth of in-
formation technology, but it has in fact al-
ways been an aspect of commerce and 
technology, from the width of railway 
gauges to the competition between impe-
rial and metric units.  
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 Typically, rival technical standards 
might emerge from two competing camps, 
so that all businesses in an industry will be 
compelled to join one alliance or another, 
none of them being big enough to secure 
the market alone. Axelrod and Bennett  [57] 
 have developed a model for the formation 
of alliances  which they have applied to the 
case of standardization of the Unix com-
puter operating system in the 1980s  [58] . 
The model treats the agents (in this case, 
the businesses) as particles that experience 
varying degrees of attraction and repulsion 
for one another, depending on factors such 
as the company size and the degree of over-
lap of their product ranges. The most stable 
confi guration of allied companies is found 
by minimizing the ‘energy’ of this many-
particle system, based on these ‘individual-
ized’ interparticle forces. They found that, 
if the number of alliances was restricted to 
just two, the model predicted a division of 
the nine computer fi rms involved into alli-

ances very close to those that developed in 
reality. (If the number of alliances is uncon-
strained, however, the energy landscape is 
much rougher, and no clear outcome is pre-
dicted above others  [59]. ) 

 This ‘landscape model’ has also been 
used by Axelrod and Bennett  [57]  to pre-
dict the formation of political alliances be-
tween the 17 European nations near the 
onset of the Second World War. This time 
the forces between particles (nations) are 
estimated according to a rather more com-
plex set of criteria, taking into account six 
factors that could determine the degree of 
friendship or antagonism. This assigna-
tion of what Tolstoy termed ‘the force that 
moves nations’  [60]  is clearly very crude 
and approximate; but nonetheless, the 
landscape model reproduced the Axis and 
Allied coalitions (or rather, something very 
close to it) for a wide range of plausible pa-
rameters, according to the political situa-
tion in 1936. The predictions fall exactly 

into line with the historical outcome if 
1939 data are used to calculate the forces, 
rather than 1936 data. (This analysis too 
has been criticized for artifi cially con-
straining the particles to form just two 
‘clusters’  [59] ; but it has been argued, and 
history seems to bear this out, that inter-
national war generally imposes such a con-
straint  [61] .)  

 Again, one should not take the quantita-
tive aspects of these models too seriously. 
What they do suggest is that considering 
social ‘actors’ (be they individuals, fi rms, 
institutions or nations) as particles that in-
teract via forces of attraction and repul-
sion, seeking states that are in some sense 
‘energetically favourable’, does seem at 
least to be a perspective worth investigat-
ing. If this kind of approach were to gain 
further support, it raises the intriguing 
idea that history itself might be sketched 
out as a landscape of possibilities with as-
sociated, crudely quantifi able probabilities 
– a new way of exploring what historians 
call ‘counterfactual history’  [62] .  

   The Transmission of Cultural 
Traits 
 Ideas and opinions pass not just from 

person to person but from culture to cul-
ture. Historically this has often been seen 
as a good thing: the Arabic culture of the 
early Middle Ages assimilated the ancient 
Greek learning that it found in Alexandria, 
for instance, and thereby kept it alive until 
transmitting it to the West via Spain in the 
11th and 12th centuries. On the other hand, 
today there is much concern about wheth-
er local customs, languages, traits, food 
and so forth can survive English-speaking 
(mostly American) hegemony that threat-
ens to turn the world into a monoculture. 
But it remains unclear just how cultural 
traits are spread – why, for example, a lan-
guage like Basque can survive for centuries 
amid a Romance-based culture, while lan-
guages like Manx have come close to ex-
tinction. 

 Fig.13. Axtell’s model of fi rm growth  [56]  has no stable equilibrium 
state – there is a constant turnover of fi rms ( a ). The model generates the 
power laws in fi rm size ( b ) and growth rate ( c ) seen in reality ( fi g. 12 ). 
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 When do groups adopt a common cul-
ture, and when do they retain their differ-
ences? Answering that question could pro-
vide insights into a variety of important 
international and social processes, such as 
the formation of nation states, the reasons 
for wars of succession, the stability of 
transnational institutions such as trade 
agreements or international courts, and 
the spread of globalization. The tragic civ-
il confl icts that erupted in the Balkans and 
in Africa during the 1990s are a reminder 
that cultural differences can persist be-
neath the façade of apparently unifi cation, 
while the recent expansion of the European 
Union raises questions about how much 
difference can be accommodated within a 
common set of goals. 

 It has been suggested that a precondi-
tion of cultural convergence is some exist-
ing similarity: ‘the transfer of ideas occurs 
most frequently between individuals…
who are similar in certain attributes such 
as beliefs, education, social status, and the 
like’  [63] . Axelrod  [64]  has used this prin-
ciple to devise a lattice model of the trans-
mission of cultural values. He assumes that 
a culture can be characterized by a list of 
features or ‘dimensions’: these might, for 
example, include language, religion, dress, 
food and so forth. All cultures are assumed 
to display these features, but they gener-
ally differ from one culture to another: they 
all have a language, for example, but not 
necessarily the same one. So each feature 
in Axelrod’s cultural landscape can have 
one of several alternative ‘values’, called 
traits, denoted simply by a number. Thus, 
for example, there might be fi ve different 
languages in the model: fi ve different val-
ues (1–5) of the ‘language feature’. (There 
is no quantitative signifi cance to these val-
ues: they are just labels.) 

 Each culture, then, is denoted by a cer-
tain number of features, each of which has 
a distinct value. The landscape is divided 
into cells, each representing a cultural unit 
– a village, say. Part of such a grid, in which 
there are fi ve cultural features that each 

have ten different traits (0–9), is depicted 
in  fi gure 14 . The grid evolves by picking 
two neighbouring cells at random and see-
ing how much cultural similarity they 
have: how many features have the same 
value. With a probability proportional to 
this degree of similarity, the two sites then 
interact by setting the value of a randomly 
selected feature on the chosen site equal to 
that on its neighbouring site. 

 Clearly, this process induces conver-
gence between the initially dissimilar cul-
tures on the grid. But how far does this con-
vergence proceed? Two neighbouring sites 
can interact only if they share at least one 
trait in common. So either the entire grid 
could evolve into a monoculture, or it could 
become frozen into a discrete number of 
non-interacting ‘island’ cultures ( fi g. 15 a). 
It is not intuitively obvious what the result 
will be, nor how this will depend on factors 
such as the grid size (or geometry), the 
number of features, and the number of 
traits for each feature. Axelrod fi nds that 
the number of stable regions in the fi nal 
state decreases (rapidly) with an increas-
ing number of features per site, increases 
with an increasing number of traits per 
feature, and at fi rst increases and then de-
creases with an increasing grid size. 

 The fi rst two observations can be un-
derstood on the basis that both increasing 
the number of features and decreasing the 

number of traits increases the probability 
of similarities, and thus convergence, be-
tween neighbouring sites. The infl uence of 
grid size is the result of two confl icting fac-
tors. A very small grid cannot support 
much cultural diversity because of sheer 
spatial limitations on diversity – the well-
known ‘island effect’ that restricts the 
number of evolutionary niches for biologi-
cal diversity on small islands. On a very 
large grid, on the other hand, interactions 
can be sustained for longer (because there 
are simply more sites), so inert confi gura-
tions of island cultures are less easily fro-
zen in. 

 Castellano et al.  [65]  have investigated 
in more detail the effect of increasing num-
ber of traits on the cultural diversity (char-
acterized by the size of the largest domain). 
They fi nd that the switch between a mono-
culture – where the largest domain encom-
passes more or less the whole grid – and a 
fragmented multicultural patchwork hap-
pens rather abruptly as the number of 
traits is increased ( fi g. 15 b). This change-
over has the characteristics of a phase 
transition, which can either be fi rst-order 
or critical, depending on the model param-
eters. In either case, however, the size dis-
tribution of the cultural regions at the 
transition point has a power-law form. The 
transition becomes increasingly sharp as 
the size of the grid increases, comparable 
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  Fig. 14.  One ‘step’ in the dissemination of culture in Axelrod’s lattice 
model  [64] , for a system in which the cultures have fi ve features each 
with ten distinct traits. The cultures chosen for comparison, leading to 
convergence, are highlighted in grey. 
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to the way that a fi nite system size induces 
‘rounding’ or blurring of phase transitions 
such as melting in physical systems. 

   Economic Markets 
 One of the best-studied examples of 

many-body social systems from a physics-
based point of view is the behaviour of eco-
nomic markets  [66–68] . The literature in 
this area has already grown so vast that I 
cannot possibly do it justice here. I shall 
simply point out that economic systems 
seem to show many of the phenomena I 
have already discussed: power-law statisti-
cal distributions (for example, in the fl uc-
tuations of stock values  [69] ), collective 
behaviour and abrupt, global changes 
(such as the herding effect on the trading 
fl oor  [68, 70] ), relative indifference to de-
tailed psychological assumptions about 
traders (indeed, certain aspects of market 
dynamics can be reproduced by assuming 
that the traders show ‘zero intelligence’, 
acting at random  [71] ), and critical points 
 [67] . It seems clear that these studies can 
potentially extend classical economic the-
ory in useful ways, for example by includ-
ing trader interactions and interdepen-
dence directly (rather than indirectly via 
their effect on prices), allowing for hetero-
geneity and irrationality in trading prac-
tices, moving beyond incorrect assump-
tions of Gaussian statistics, and treating 
the economy as a truly non-equilibrium 
system. 

   Free Will and Determinism 
 When statistics were fi rst introduced 

into studies of social behaviour in the 18th 
century, some commentators reacted with 
dismay. Was this not subjecting human na-
ture to a tyranny of numbers? Immanuel 
Kant was ruthlessly unsentimental about 
it, however: 

   ‘Whatever concept one may hold, from 
a metaphysical point of view, concerning 
the freedom of the will, certainly its ap-
pearances, which are human actions, like 

every other natural event are determined 
by universal laws’  [72] . 

   There is some careful hedging here: 
Kant does not say that there is no such 
thing as free will, but only that it does not 

matter very much: the outcome still has the 
mathematical regularity and predictabili-
ty of a ‘natural law’. He went on to be more 
explicit about this: 
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  Fig. 15.  Axelrod’s model typically evolves from a grid of ‘island cultures’ to a state in which 
one island grows to dominate the grid ( a ). Here, the dark lines show the boundaries between 
grid cells, and are shaded according to the degree of similarity between adjacent cultures. 
The fi nal state in this run has three distinct cultures that can no longer interact [from  64] . The 
geographical extent of the largest culture in the fi nal state depends on how many values  N  
each cultural feature can take. As  N  increases, there is an abrupt switch from an essentially 
monocultural state to a grid with a lot of cultural diversity ( b ). Here this switch happens in a 
phase transition at around N = 240 [from  65] .   
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   ‘Individual men, and even whole na-
tions, little think, while they are pursuing 
their own purposes… that they are ad-
vancing unconsciously under the guidance 
of a purpose of nature which is unknown 
to them’  [72] . 

   Others were careful to spell out that 
these ‘universal laws’ were purely statisti-
cal: they were apparent only when large 
numbers of individuals were taken into ac-
count. In  A System of Logic  (1862), John 
Stuart Mill said: 

   ‘Very events which in their own nature 
appear most capricious and uncertain, 
and which in any individual case no at-
tainable degree of knowledge would en-
able us to foresee, occur, when consider-
able numbers are taken into the account, 
with a degree of regularity approaching to 
mathematical’  [73] . 

   That would seem to be a reasonable 
statement of what is being suggested in the 
models I have discussed above. But some 
19th century statisticians sailed closer to 
the wind: the arch-enthusiast for ‘social 
mechanics’, the Belgian Adolphe Quételet, 
felt that the emergence of social averages 
carried a moral aspect, so that it was good 
to aspire towards the mean: 

   ‘An individual who epitomized in him-
self, at a given time, all the qualities of the 
average man, would represent at once all 
the greatness, beauty and goodness of that 
being…Deviations more or less great from 
the mean have constituted…ugliness in 
body as well as vice in morals and a state 
of sickness with regard to the constitution’ 
 [74, 75] . 

   This seems to be an endorsement of so-
cial conformity and uniformity – a pre-
scription for a bland, colourless society. No 
wonder, then, that Fyodor Dostoevsky re-
sponded to this passion for making society 
statistical and mathematical with an as-
sertion that it implied the end of free will, 
and by implication, the end of humanity: 

   ‘As a matter of fact, if ever there shall be 
discovered a formula which shall exactly 
express our wills and whims; if there ever 

shall be discovered a formula which shall 
make it absolutely clear what those wills 
depend upon, and what laws they are gov-
erned by, and what means of diffusion they 
possess, and what tendencies they follow 
under given circumstances; if ever there 
shall be discovered a formula which shall 
be mathematical in its precision, well, gen-
tlemen, whenever such a formula shall be 
found, man will have ceased to have a will 
of his own – he will have ceased even to 
exist’  [76] . 

   Should we be prepared, in developing a 
physics of society, for objections like Dos-
toevsky’s? Probably – but there are several 
ways of responding to them. First, the fact 
is that the kind of models I have discussed 
are, if anything, a way of putting choice 
back into the kind of social modelling that, 
based on the economic notion of rational 
maximizers, threatens to portray people as 
automata. There is not always a single, ra-
tional ‘best choice’ in a given situation; or 
even if there is, people do not always take 
it. These physics-based models explicitly 
allow for a multiplicity of choices, which 
are typically assumed to be made not on 
rigidly deterministic grounds but on a 
probabilistic basis. All they really assert is 
that those choices are rarely independent: 
we are infl uenced by what others choose. 
Once that happens, the outcome can be 
non-linear and non-intuitive. 

 Second, it is fair to say that free will is 
over-rated. To most people, it implies the 
exercising of a completely free choice. But 
our choices are rarely free. They are infl u-
enced by all manner of considerations – 
not just what others do (or prevailing so-
cial norms), but by our own immediate cir-
cumstances, by advertising, by our social 
backgrounds and so forth. Some of these 
factors are surely unquantifi able – but this 
does not mean we cannot at least gauge the 
tendencies they induce. Politicians and ad-
vertisers, of all people, know how to be per-
suasive: if they could not infl uence deci-
sion making with at least some degree of 

calculated effect, they would not survive 
for long. 

 What is more, free will is typically se-
verely constrained by the social setting. My 
free will as a driver does not lead me to 
drive on the wrong side of the road. My free 
will as a consumer does not persuade me 
to go shopping naked, or to buy one hun-
dred loaves of bread. My free will as a voter 
does not lead me to vote for my mother as 
prime minister. Physics-based models of 
social behaviour are often tractable not be-
cause behaviours are prescribed but be-
cause the range of options is so limited. 
This is why it is most unlikely that anyone 
will ever develop a physics-based theory of 
how to write a novel. Social physics needs 
to cultivate an attitude of humility, but so 
should advocates of free will.  

   How Seriously Should We 
Take It? 
 For the physicist, the more immediate 

question is perhaps: is this really physics at 
all? At least, that is often the way the ques-
tion is phrased by sceptics. I think it is 
more pertinent to ask: is it really social sci-
ence? The models are often very precisely 
defi ned, to the extent that, for example, one 
can say for sure that a sudden change is a 
fi rst-order phase transition, and not just 
something that looks a bit like it. Analogies 
with familiar physical systems such as the 
Ising model and order-disorder transi-
tions can be made formally exact, not just 
loose comparisons  [13, 14] . But does any 
of this come close to capturing real social 
behaviour?  

 I think it is fair to say that at present that 
is largely an unresolved issue. One reason 
for this is that the data necessary to put the 
models to the test are often largely absent. 
Collecting social statistics is an immense 
and diffi cult task, and it should not be for-
gotten that it also requires great skill and 
experience of the sort that social scientists 
have and physical scientists do not. Many 
social phenomena are one-off experi-
ments, without controls and without the 
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option of altering crucial parameters inde-
pendently. It is sometimes not even clear 
what the relevant parameters are: that is to 
say, how the parameters of a particular ide-
alized model translate into anything re-
sembling the real world. How do you enu-
merate the features that characterize a so-
ciety, and how do you count up the 
respective traits? Is it truly meaningful to 
dissect a culture in this way? 

 This is why those social systems that 
have perhaps yielded the best examples for 
physics-based modelling are highly con-
strained ones, such as road traffi c. There 
are also a few social systems, such as the 
economic markets, for which the sheer vol-
ume of readily available and clear-cut data 
makes some progress possible. But these 
instances are rather rare, and I suggest that 
it is wisest at this stage to regard many 
studies of the ‘physics of society’ as doing 
no more than providing ‘toy models’ that 
have to be taken with a pinch of salt. 

 On the other hand, this does not mean 
that such studies have no value. On the con-
trary, I would argue that their primary val-
ue is often to challenge entrenched precon-
ceptions about how human society works. 
Policy makers are all too prone to linear 
thinking: they assume that if we under-
stand how an individual tends to think or 
behave, we can understand what a popula-
tion will do. It is surely time to move beyond 
this ‘ideal gas’ position and to acknowledge 
that the interactive nature of society makes 
it a truly complex and non-linear system. 
Physics-based modelling tells us not only 
that interactions may change the picture 
entirely, relative to a linear extrapolation 
from individuals. It also shows that this in-
jection of complexity does not necessarily 
make the problem impossible, for there are 
likely to be robust modes of collective be-
haviour that remain relatively insensitive 
to the fi ne details and idiosyncracies of in-
dividual actions and responses. And that 
seems worth knowing.   
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